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The incompressible laminar flow in the neighbourhood of the trailing edge of an 
aerofoil undergoing sinusoidal oscillations of small amplitude in a uniform stream is 
described in the limit as the Reynolds number R tends to  infinity. It is shown that if 
the frequency parameter is of any order less than R* the viscous correction to  the 
Kutta condition and hence to the lift and moment may be determined from the results 
for the steady case. Justification of this correlation requires discussion of the flow in 
an additional region not encountered in previous studies. 

1. Introduction 
In  this note we show that the viscous correction to  the Kutta condition and hence 

to the lift for an aerofoil oscillating about a fixed point in a steady stream can be 
obtained from the corresponding results for an aerofoil at constant incidence a t  both 
moderate and fairly large values of the frequency parameter. The steady lifting 
aerofoil was discussed by Brown & Stewartson (1970) and the theory for a very rapidly 
oscillating aerofoil was given by Brown & Daniels (1975). We shall refer to  these papers 
as I and I1 respectively. The correlation between the steady and unsteady flows to be 
described here does not hold for the high values of the frequency parameter con- 
sidered in I1 though the theory is applicable in parts of the flow field. I n  both I and I1 
extensive use was made of the trailing-edge triple-deck analysis of Stewartson (1969) 
and Messiter ( 1  970). 

We consider a flat plate of length 1 fixed a t  its mid-point and performing a sinusoidal 
pitching motion of small amplitude a*l and frequency w * .  The parameters of the 
problem are the Reynolds number R = U, l l u ,  where U, is the mainstream speed and 
v is the kinematic viscosity, the non-dimensional amplitude a* and the reduced 
frequency (or Strouhal number) S = w*l/U,. The Reynolds number is assumed to  be 
large and the orders of magnitude of the other parameters were chosen in I and I1 to 
ensure an attached flow right up to the trailing edge. I n  I, the steady problem, S = 0 
anda* = O(R-1'E). InII,fortherapidlyoscillatingaerofoil,S = O(R*)anda* = O(R-+e). 
The essential differences between these two limits, and the way in which they are 
spanned by the present work in which 0 < S < O(Ri) ,  is explained now below. 

In  I it is shown that the boundary layers on the two sides of the plate separately 
enter the triple deck and the flow in the lower deck on both sides is governed by 
partial differential equations which must be solved numerically for each value of 
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a ( =  Ri'eh-:a*, h = 0.332 the Blasius skin-friction constant). Solutions with a = 0 
were obtained by Jobe & Burggraf (1974), Veldman & van de Vooren (1975) and by 
Melnik & Chow (1975). The last-named authors (Chow & Melnik 1977) also considered 
0 < a < 0.45 and estimated that the flow on the suction side of the aerofoil separates 
precisely a t  the trailing edge when a = 0.47. In  the main deck of the triple deck the 
velocity component u parallel to the plate is of the form 

u(5, y) /U,  = V0(y) + R-&A(x) dDo/dy,  (1.1) 

where x, y are non-dimensional distances of order unity in the triple deck measuring 
distances along and perpendicular to  the aerofoil with origin a t  the trailing edge. I n  
the limit R -+ co, co(y) is the Blasius function. The function A ( x )  is determined by the 
solution of the inner-deck equations and an important distinction from the rapidly 
oscillating limit of I1 is that  here A(z) = O( ( - , ) a )  as x + - co upstream of the triple 
deck. As x -+ GO there is a match with a displaced Goldstein wake. 

I n  I1 the partial differential equations of the inner deck of the triple deck are 
unsteady and no solutions of them have as yet been found though the authors did 
present an approximate solution for R-d-S B 1. The regions of flow include a perturbed 
Blasius layer with an underlying Stokes layer and a two-layered foredeck upstream of 
the conventional triple deck. The flow is unsteady in all regions and A ( x )  in (1.1) is now 
a function of the timet as welland issuch that B(x ,  t )  = 0(( - x)-4) as x+ - coupstream 
of the triple deck. Again as x -+ GO there is a match with a displaced Goldstein wake. 

Let us now consider the intermediate values of S ,  i.e. 0 < S < O(R4). I n  such 
solutions the time derivative does not occur in the fundamental triple-deck equations 
and t occurs merely as a parameter. When S = O(1) the perturbation to the Blasius 
flow differs from that for the steady case only by a factor eiw"* as does the flow in the 
main deck of the triple deck. This means that the solution of the steady inner-deck 
equations applies to  the unsteady case with an appropriate definition ofa involving 
S and eiwetn. The same is true if the aerofoil is in a plunging rather than a pitching 
mode and, for sufficiently small time, to  an aerofoil in a gust. 

It is not immediately obvious that the numerical results of Chow & Melnik for the 
steady case can also be applied to  the range 1 < S < Ri. It is quite evident that, as 
when S = O( l ) ,  the time derivative does not occur in the inner-deck equations, which 
are therefore as in I .  Thus as x -+ - co the B(x, t )  corresponding to A(x) in I is such that 
B(x ,  t )  = 0(( - x ) i ) .  However the upstream flow is unsteady with Stokes layers in both 
the perturbed Blasius layer and the foredeck, which is now of width O(S-l) instead of 
O(R-k). The solutions in these regions require that for a match with the inner deck to 
be possible then A(x, t )  = 0(( - x)") as x -+ - 00 as in the case of I1 with S = O(Ra). In  
this paper we show that this seeming mismatch can be circumvented by the insertion of 
a second foredeck of width O(S-3) between the first foredeck and the triple deck. This 
justifies using the results of Chow & Melnik for predictions of the Kutta constant and 
the correction therefrom to the lift and moment for values of S from zero to  any order 
less thanO(Rd-). Theorders of magnitude of a+ and Smust be such that a+S2 = O ( R - A ) ,  
unless S --f 0, in which case a* = O(R-A) as in I .  If the order of magnitude of this 
product is greater the flow will not remain attached right up to the trailing edge, and 
if it is less the inner-deck solution is a linear perturbation of that  for the plate a t  zero 
incidence. The theory outlined in the subsequent sections embraces all values of 
S < O(R2) and shows that the second foredeck merges with the triple deck as the order 
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FIGURE 1. The regions of flow in the neighbourhood of the trailing edge on the upper side of the 
plate (not to scale). I ,  potential flow; 11, perturbed Blasius flow and inner Stokes layer; 111, the 
first foredeck; IV, the second foredeck; V, the triple dsck; VI,  modified Goldstein wake. 

of magnitude of S nears O(Rf) and that as S becomes O(1) the foredecks become of 
finite width and disappear into the perturbed Blasius layer. 

The regions of flow are illustrated in figure 1 .  Region I is the potential flow and 
regions 11, and 11, are the perturbed Blasius layer and its Stokes layer respectively. 
The two layers of the first foredeck are denoted by 111, and 111, while the second 
foredeck divides into IV, and IV,. Region V consists of the three layers of the triple 
deck while region VI comprises the outer and inner modified Goldstein wake. It is 
region IV that is additional to those occurring in reference 11. 

1 and one 
with S = O( 1) .  We explain the method of correlation with the results of Chow & Melnik 
and calculate in each case the viscous correction to the lift and moment. For each 
example there is a maximum value of the amplitude, corresponding t o  the stall angle 
of Chow & Melnik at which separation occurred at  the trailing edge. I n  the steady case 
there was a dramatic loss of lift a t  this angle of incidence. Here the singularity gives 
either an increase or decrease in the lift. In  the two examples studied the phenomenon 
occurs a t  different times in the oscillatory cycle. 

I n  the final section we apply the theory to two examples - one with S2 

2. The external potential flow 
The external potential flow is as set out in I1 though, when S = O( l), ( 2 . 2 )  and ( 2 . 6 )  

of that paper should be corrected as below. It reduces to  that of I as w* --f 0 though it 
should be noted that the limiting angle of incidence is then 2a* while it is a* in I. We 
consider a flat plate of length 1 with mid-point at the origin 0 of a set of Cartesian 
co-ordinates (x* ,  y*) fixed in space. The plate performs oscillations of amplitude a*l 
and frequency w* in an incompressible fluid of constant density p which has uniform 
velocity [J ,  at  infinity. At any time t* the equation of the plate is thus 

( -  frl 6 x* < +Z), (2.1) y* = - 2a*x*eiw*t* 

where here and henceforth the real part of any complex expression is to  be taken. 
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When terms O ( C X * ~ )  are neglected the pressure on the upper surface of the plate is 
given by (2.2) of I1 corrected to read 

where pm is the pressure at infinity. The pressure on the lower side is minus the 
expression given in (2.2). The functions a,, a2 are given by 

a,(t*) = - 2ia*Sei~"t* , = ga*fJ2eiw*t*. 7 (2.3) 

also B(t*), which is to be found by matching with the triple deck, is related to the 
circulation and will give the viscous correction to the lift and moment. The function A 
is defined by 

where S = u*E/Um is the frequency parameter. Also HJ2), Hi2)  are Hankel functions of 
the second kind, and (see Robinson & Laurmann 1956) 

ao(t*) = - a*N(S) eiwnt*, ( 2 . 5 )  

where 

When S 

4Hj24 $8) + SHd2)( $27) N ( S )  = 
Hi2)( $8) + iHd2)( +A!) ' 

1, A(S) NN 0 and 

when S << 1, the steady situation, A(S) z 1 and ao(t*) z - 4a*. 

amended to read 
The expressions for the lift and anti-clockwise moment in (2.6) of I1 should also be 

(2.8) 

We require the form o f p *  only as the trailing edge is approached. The required 

1 L = - &~plU:{a,(t*) + a,(t*) + B(t*) ( 1  +- A(S))}, 
M = &dU:{a,(t*) - a&*) - B(t*) ( 1  - A(S))}. 

expression is 

9 (2.9) 
P* - P m  

PUZ, 
- {+ao(t*) + 2a,(t*) + 4a2(t*)} 

which reduces to that considered in I as S -+ 0 and in I1 as S .+ 00. At this stage in I and 
I1 the orders of magnitude of theparameterswerespecified so that as the triple deck is 
approached the potential pressure in (2.9) is of the same order of magnitude as that 
induced by the triple deck, i.e. O(e2) when + - x*/t = O(e3) ,  where 

R = Uml/v = E-8 9 1.  

In I1 this determined a*X2 so that 
a*s2 = O(E4) 

(2.10) 

(2.11) 

and when S = O( 1 )  this reduces to the order of magnitude of a* considered in I. In I1 
S was chosen to be 0(c2) so that the thickness of the Stokes layer underlying the 
perturbed Blasius boundary layer approaching the trailing edge, which is O(S-te*)), 
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was of the same order O(e5) as that of the inner deck. Here we retain (2 .1  1 )  but consider 
any S whose order is less than c2 so that the Stokes layer is thicker than the inner 
deck, which is O(e5), but is thinner than the middle deck, which is O(e4) as is a con- 
ventional boundary layer. 

If X < 1 the appropriate replacement for ( 2 . 1 1 )  is a* = O(e4) as in I. This case is in 
fact covered by the situation S = O(1)  and the solution may be obtained by letting 
S -+ 0 in the discussion of $ 3 .  

It is instructive at  this stage to compare the inviscid pressure given by ( 2 . 9 )  with the 
corresponding steady pressure obtained from ( 2 . 2 )  of I. In order not to confuse the 
notation we denote a* and B of I by a$ and B M  respectively. Thus from ( 2 . 2 )  of I we 
obtain, on changing the origin there to - 41, 

( 2 . 1 2 )  

In the following sections we shall show that the solutions of the inner-deck equations 
for the steady and the unsteady problems are the same for any S with 0 < S < O(R4) 
if we identify a$ with - {4a0(t*)  + 2a,(t*) + 4a,(t*)} when this expression is positive and 
a$ with {4ao(t*) + 2a1(t*) + 4a,(t*)} otherwise. In either case the correspondence 
between B M  and B ( t * )  is the same, namely 

q B ( t * )  = - {&Zo(t*) + 2a,(t*) + a U z ( t * ) } B ~ / l ,  ( 2 . 1 3 )  

and it is the determination of B ( t * )  that is the chief aim of the study as it gives the 
viscous correction to the lift and moment in ( 2 . 8 ) .  Since B M  is known as a function of 
a& from the results of Chow & Melnik ( 1 9 7 7 )  we shall be able to identify an a& corre- 
sponding to each t* and then calculate B ( t * )  for each t* .  If for all t* the expression 
{aao(t*) + 2a,(t*) + 4a,(t*)} is negative then the top of the steadyplateand the top of the 
oscillating plate correspond at all points of its cycle. If this expression changes sign 
then the top of the oscillating plate corresponds to the bottom of the steady plate 
during that time the expression is positive. When the theory has been established we 
shall present an example in the final section. 

As in I1 we first non-dimensionalize the variables and change to axes fixed in the 
plate by writing 

( 2 . 1 4 )  x*/l- 4 = x + a*yeit, y * / l  = y - a * ( x  + $) eit 

and 
( 2 . 1 5 )  

where t = w*t*. The equation of the plate is now 

y = o  ( - l < x < O )  ( 2 . 1 6 )  

for all t and as in I1 the extra terms in the Navier-Stokes equations due to the rotation 
will not be required to the degree of approximation considered. 
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3. The correlation between the steady and unsteady situations when 
S = O(1) 

When S = O( I ) ,  a* = O ( d )  and we anticipate that B(t*) = O(&) as this corresponds 
to B,  = O(@) in I. The flow regions are in fact exactly as outlined in I. There is a 
perturbed Blasius boundary layer the solution for which is, as the trailing edge is 
approached, identical with that in I with a& replaced by 

a$ = T {&a,(t*) + 2a1(t*) + 4a,(t*)) (3.1) 

according as the upper surfaces of the two plates correspond or the upper surface of the 
steady plate corresponds to the lower surface of the oscillating plate. Again with (3.1) 
the solutions in the main and upper decks are the same except that the function Al(x) 
is replaced by A,(x, t ) .  The equations in the inner deck are also exactly the same since 
the oscillation is too slow for the time derivative to occur so t is only a parameter 
arising in the boundary condition. The inner-deck equations have been solved by 
Chow & Melnik (1977) for each positive value of a% up to a maximum of 0.45 for 
a$e-3h-z and we therefore have solutions for the corresponding values of t*. In  
particular we have B(t*). An example is presented in 5 5 .  

4. The steady and unsteady correlation when S $ 1 

( a )  The perturbed Blasius boundary layer and the Jirst foredeck 

When S 1 the perturbed Blasius boundary layer that approaches the trailing edge 
has an underlying Stokes layer of thickness e4S-*. The solution is exactly that given in 
11, which we rewrite, without stipulating the order of magnitude of S, as 

(4.1) I u = f;3(c) - $ia*X( - x)-* eit, 

v = - &( 1 + x)-t (fB - &) + Bia*Sij( - x)-g eit ,  

to the required degree of approximation. Here 

D = yis4, V = 2)/€4, 6 = y/( 1 + x)4, (4.2) 

T j  = S-tz (4.3) 

where u, v are the velocity components defined in (2.15) andfB(<) is the Blasius function. 
In  the Stokes region below this 

u = AS-$( 1 + x)-* z - tia*S( - x)-t (1 - e-i'z) ei t ,  ) (4.4) 
and 

5 = i h ~ - l (  1 + x)-% 2 2  + gia*s$( - 21-3 (2 - i-t( 1 - e-i'z)] eit, 

where it = ( 1  +i)/24. 
The next region encountered by the fluid is the foredeck, which is of width O(S-1). 

In I1 it was of width O(e2) since there AS-' was O(e2)  and the solution here is exactly the 
same. The only result we shall need from this is the behaviour of the solution as the 
fluid leaves this deck on the trailing-edge side. From I1 this is found to be 

(4.5) I u = u,(D) - iia*S%h-l( - x1)-3. U;(Y) eit, 

,ij = Qia*SSh-l( - q - 8  U,(D) eit (xl --f 0 - 1 ,  
where x1 = Sx and U,(@ = f&(y), the Blasius profile evaluated at  the trailing edge. 
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I n  the lower deck of the foredeck the solution is as (4.3), (4.4) written in terms of XI. 
It is a t  this stage we find that we are going to be unable to effect a match between the 
foredeck and the Stewartson triple deck as described in I. The required power of x1 for 
a match of the velocity component u will be ( - xl) i  since the steady equations will hold 
in the triple deck with t simply playing the role of a parameter. This indicates the 
presence of a second foredeck between this and the triple deck, its width being 
determined by the requirement that the perturbation to u, which in terms of the 
original x enters the second foredeck with order of magnitude O(a*S( - x)-*) as in ( 4 4 ,  
leaves it with an order of magnitude O(a*X2( -x)*). This last order of magnitude is 
deduced from the behaviour of the triple-deck flow on the upstream side as discussed 
in I .  There the factor S2 was of course absent but is present here because the dominant 
term in the inviscid pressure, which forces the term in (--x)*, is, when X 1, the 
contribution from a,(t*) in (2.9), which is, from (2.3), proportional to  a*S2. In  I the 
corresponding term was simply O(a*). The requirement that the two orders of magni- 
tude, O(a*S( - x)-i)  and O(a*S2( -.)a), be the same leads to  

x = O(S-8) (4.6) 

as the width of the second foredeck. The success of the present scheme depends on their 
being an appropriate solution in the new deck. We justify it in the following. 

( b )  The second foredeck 

The crucial region that provides the match between the essentially unsteady flow 
in the perturbed Blasius layer and foredeck and the steady triple deck is, as shown in 
the previous section, of width O(S-a). Like the regions considered previously i t  is in 
two parts, one of thickness O(e4) and the second, as will emerge, of thickness O(e4S-*) 
as the Stokes layers previously considered. In  the second foredeck the pressure is still 
determined by the inviscid solution and the equations that hold are again the boundary- 
layer equations 

In this region the mainstream is of the form Ua{ 1 + U(x)  eit}, where U ( x )  is determined 
from U,U'(x) = -p*'(x)/p,  so that, from (2.9) with S > 1, 

U ( x )  = - &a*S2( - x ) k  
I n  (4.7) we write x, = Sax and 

u = U0@) + a*Siu (x 
5 = a*SL2v2(x2, g) eit, n7g)eit31 

the powers of S following from (4.5) written in the variable x,. Then we obtain 

The solution of (4.10), is, since X > 1, 

(4.8) 

(4.9) 

(4.10) 

(4.11) 



178 8. N .  Brown and H .  K .  Cheng 

where A2(x2)  is determined by the solution in the lower deck of the foredeck which we 
now consider. 

In  this lower deck we write 
i j  = X-bj,, v2 = s-tv,, (4.12) 

so that equations (4.10) become 

(4.13) 

where h = UA(0) = 0.332. These equations are to be solved over (-m,O) such that 
u2(x2, 0) = E2(x2, 0) = 0 and u2 -+ hA2(x2) as B2 -+ 00. Since the equations are parabolic, 
so that the solution in x2 < 0 is unaffected by that in x2 > 0, we may assume that they 
and the boundary conditions hold for all x2 with the function ( - x 2 ) d  defined to be zero 
for x2 > 0. Thus we may use a Fourier transform and define C2(w,  y2) as the Fourier 
transform of u2(x2, y2) with respect to x2 so that 

(4.14) 

and find that the solution of (4.13) satisfying the boundary conditions a t  ij2 = 0 is 

Here 

(4.15) 

(4.16) 

and 8 is a small parameter introduced for convenience. The transform A2(o) of A2(x2)  
is determined by the requirement that u2 -+ hA2(x2) as ij2 -+ m. This leads to  

n) e-in/12 

A,(w) = - (w + is)-) (w - ib)-3 (4.17) 
4h* Ai' (2,) 

It now remains to check that this foredeck solution does what is required of it. I n  
fact the behaviour of u2 and auz/aij2 therein is very similar to that of the corresponding 
quantities in the perturbed Blasius boundary layer of I of which this is the unsteady 
analogue. To ensure that we have a match with the foredeck we must examine this 
solution as x2 -+ - co. The easiest quantity to examine is the skin friction, which must 
match with that given by (4.4), which also holds throughout the foredeck. We 
consider (4.15) for small IwI from which, on replacing the Airy functions by their 
asymptotic expansions, 

so that, as x2 -+ - co, 

(4.18) 

(4.19) 

which leads to a match with the second term of (4.4). 
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We now require the form of A 2 ( x 2 )  as x2 + 0- to see if we can match with the known 
properties of the steady triple deck as discussedin I .  The behaviour of A 2 ( x 2 )  as x2 -+ 0- 
may be obtained by considering 1 0 1  to be large in (4.17). Thus 

. .  
so that, upon inversion, 

6f( - +)! 
2hQ 

A 2 ( x 2 )  M -- (-x2)Q as x 2 +  O-, 

(4.20) 

(4.21) 

and the required one-sixth power for a match with the steady triple-deck solution is 
recovered. 

Again as in the perturbed Blasius boundary-layer discussion of I the behaviour of 
au2/ajj2)t,=o is non-commutative as - x 2  -+ 0 .  If we let ij2 -+ 0 first we obtain, from 

nt ein/12 Ai (0)  
(w  + is)-* (w - iS)-f , 2)+0 - 4hf Air (0) 

on subsequently considering IwI to be small, which on inversion leads to 

However, if we let x2 -+ 0 first we find that 

Ai (2,) do 
(w + iS)h (w - i S ) f  Ai’ (ZJ’ 

(4.22) 

(4.23) 

(4.24) 

which is to be examined as j j 2  -+ 0. For small jj2 the chief contribution to the integral 
comes from large values of Iw( and it is sufficient to consider 

n-4 e in/12  m Ai [einla(w - is)* hf TjJ dw 
(4.25) 

8hfAi‘(O) s --m (w+i l i )a(w- iS) f  

Now the integral in (4.25) may be shown to be equal to 

So altogether (4.27) 

This solution has the same form as that in the perturbed Blasius boundary layer of I 
and may be matched directly to the steady triple deck with an appropriate definition 
of at. In the second foredeck we see that the combination j j 2 / (  -x2)* is equal to 
Tj/(  - x)*, the variable that is O( 1)  in the scaled co-ordinates of the triple deck. 

As S increases to O(e-2) the second foredeck becomes identical with the triple deck 
and the flow therein is unsteady. As S decreases to become O( 1 )  both foredecks become 
of finite width and are indistinguishable from the Blasius boundary layer. 

This completes the theoretical discussion of the correspondence between the steady 
and unsteady trailing-edge flows. We now present two examples, one with S >> 1 and 
the second with S = O( 1). 
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5. Two examples of the viscous correction to the unsteady lift and moment 
(a)  s 9 1 

When S 9 1 we replace a,, a,, a2 in (2.8), (2.9) by their values for large S so that (2.8) 
becomes 

L = -+npZU2,{$a*Ssint+B(t*)}, 
(5.1) 

and, since &(t*) + 2a,(t*) + 4a2(t*) x +a*S2 cost, the correspondence between a$ of 
the steady situation and a* here is, as explained following (2.12), 

} M = - QnpzU:{ Qa*S2 COB t + B(t*)}, 

a$ = T +a*S2cost, (5.2) 

B,/ l= cs3h-bl(a,), 

according as cost 10. Also in the notation of 2, and Melnik & Chow (1975), 

where a& = dh%t,. Hence equation (2.13) gives for B(t*) 

B(t*) = -a*s2 8 h-b,(a,) cost, (5.3) 

where aM varies with t according to (5.2). Between them (5.2) and (5.3) determine 
B(t*) and from (5.1) we have 

(5.4) 

(5 .5)  

L = +npl U2, a*S2{ - QS-l sin t + s3h-*b,(t) cost}, 

M = QnpZU2, a*S2( - Q + €3h4bl(t)} cos t, 

where b,(t) = al(aM). Thus the viscous correction to the lift is greater by a factor of S 
than that to the moment. 

From equation ( 5 . 2 )  we see that when cost > 0, i.e. when the oscillating plate has a 
positive incidence to the oncoming flow, its upper surface corresponds to the lower 
surface of the steady aerofoil. Now the maximum value ofa, is 0.47 corresponding to 
the separation of the flow on the top of the steady plate, soif as anexamplewe choose 

= @47~th% (5 .6)  

then the flow will just separate at the trailing edge every time cost = _+ 1. We use the 
results of Chow & Melnik, who graphed a,(a,) for 0 < a, < 0.45 and estimated 
separation to occur at a, = 0.47, to plot b,(t) cost for this example in figure 2. If as a 
representative period we take 0 < t < 271 we see that for the first quarter period the 
aerofoil is at a positive incidence to the oncoming flow since cos t > 0 but, as the lower 
surface of the plate corresponds to the upper surface of the steady aerofoil, the 
separation that occurs a t  t = 0 is on the lower surface and corresponds to a dramatic 
increase rather than decrease of lift. At t = n the flow just separates on the upper 
surface when the aerofoil is at its maximum negative incidence to the oncoming stream 
and there is a decrease of lift. At t = 2n the separation is on the lower surface again. 
At t = 0 and 2n there is a considerable increase in clockwise moment and at  t = n 
a decrease. 

In  figure 2 we also include b,(t) cost for the example 

*a"S2 = @235&hs (5.7) 
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(broken curve) and fa*S2 = 0 . 2 3 5 e h x  (continuous curve). 

0 ~ f n  t n  21r 

t 

FIQURE 3. The function b,(t)  for S = 1 and u* = 0.131ehz 
(broken curve) and a* = 0-098e*h: (continuous curve). 

for which the amplitude is never so large as to cause separation. This is illustrated by 
the smoothness of the curve. 

For the second example we set S = 1 so that now 

( b )  S = O(1) 

'% = f Re{&N( 1 )  + 4i - 4) eit (5.8) 

(5-9) 

a* 

according as the right-hand side is positive or negative, and (2.13) gives 

B(t*) = Rea*e3A-%a,(aM) { N (  1 )  + 8i - l} ef t .  
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From (2.8) we now obtain 

S. N .  Brown and H .  K .  Cheng 

L = Re&rpZU2,a*{N(1)+2i-( l+A(l))e3h--%bl( t ) (N(1)+8i-  l)}eit, (5.10) 

M = -Re&rpZU2,a*{N( l )+~+(1-A( l ) ) s3h-*bl ( t ) (N(1)+8i -  l)}eit, (5.11) 

where, as before, b,(t) = a,(aM), to be calculated from (5.8) and the results of Melnik 
& Chow. 

Since (5.8) may be written as 

a$/a* = _+ (0.771 cost - 3.498 sin t)  (5.12) 

and the maximum of the expression on the right-hand side is 3.582 occurring when 
t = 1.788, we take 

a* = O.l3ls!zh; (5.13) 

so that maxaM = 0.47. In figure 3 we plot b,(t)  (not b,(t)  cost as in figure 2) and note 
that separation occurs at t = 1.788, t = 4.929. At t = 0 the aerofoil is at  maximum 
amplitude in the nose-up position and the upper surface of this aerofoil corresponds to 
the upper surface of the steady aerofoil until t = 0.217. Thus the first separation, which 
occurs at t = 1.788, by which time the aerofoil is in the the nose-down position and at 
about 6 of its maximum deviation, is on the lower side of the plate. The expressions 
(5.10), (5.11) for the lift and anti-clockwise moment about the mid-point become, for 
this example, 

L = ~ 7 r p l U ~ a * { 2 ~ 5 4 2 c o s t - 0 ~ 9 9 5 s ~ n t - ~ 3 h - * b , ( t )  (3-953cost- 7.901 sint)}, (5.14) 

M = -&rpZU2,a*{2.667cost+ 1~005sint-e3h-*b,( t ) (0~868cost+ 6*090sint)), (5.15) 

so this separation corresponds to an increase of lift and anti-clockwise moment. The 
second separation in 0 < t < 27r occurs when t = 4.929 and the aerofoil is in the nose-up 
position. This is now on the upper side of the plate and gives a dramatic decrease in 
lift and anti-clockwise moment. 

Also in figure 3 we include b,(t) for the example 

a* = 0*098€!zh~, (5.16) 

for which the flow does not separate a t  any part of the cycle. The expressions for the 
lift and moment are again (5.14), (5.15). 

6. Conclusions 
We have shown how the viscous correction to the lift and moment for an aerofoil 

oscillating in a uniform incompressible main stream may be calculated from the 
results of Chow & Melnik (1977) for the steady case as long as the frequency of oscil- 
lation is not too large, specifically S < R*. A similar analysis can be carried through 
when the aerofoil is in a plunging rather than a pitching mode with 

y* = - +h*l cosw*t* ( - Q 1 <  X* < 91) (6.1) 

though thevalues of uo(t*), u,(t*), a,(t*) are nowdifferent. We have presented examples 
for an oscillating aerofoil both when S = 1 and S 4 1 which illustrate the correction 
to  the lift and moment for an amplitude when the flow just separates at the trailing 
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edge and again when there is no separation at any point of the cycle. Such separation is 
often interpreted as trailing-edge stall. 

This work was in part supported by the U.S. National Science Foundation, 
Engineering Division. 
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